
Abstract We report in this review on the electronic

continuum states of semiconductor Quantum Wells

and Quantum Dots and highlight the decisive part

played by the virtual bound states in the optical

properties of these structures. The two particles con-

tinuum states of Quantum Dots control the deco-

herence of the excited electron – hole states. The part

played by Auger scattering in Quantum Dots is also

discussed.
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Introduction

A number of modern opto-electronics devices involve

low dimensional semiconductor heterostructures. In

Quantum well (QW) lasers, for instance, the electron–

hole recombination involves electrons and holes that

are bound along the growth axis of the heterostructure

but free to move in the layer planes. In a quantum dot

(QD) laser the recombination takes place between

electrons and holes that are bound along the three

directions of space [1]. Yet, whatever the dimension-

ality of the carrier motion in the lasing medium, the

feeding of the QW or QD lasers with carriers by elec-

trical injection occurs from the bulk-like contacts

through heterostructure electron/hole states that are

spatially extended. Along the same line, in an unipolar

QD-based photo-detector, the initial state is bound, the

final state is delocalized. It is not often realized that the

continuum of these extended states may show structure

and that the eigenstates corresponding to certain

energy regions of the continuum may display abnor-

mally large amplitudes where the bound states are

mainly localized in the heterostructures, thereby being

prevalent in the phenomena of capture processes.

When looking at zero-dimensional heterostructures

(QDs), it may also well happen that there exist bound

two-particle states (e.g., electron–hole or two electron

states) that are superimposed to a two particle con-

tinuum. This feature is as a rule a necessity and recalls,

e.g., the ionization states of two electron atoms like He.

In the context of QDs, the occurrence of bound elec-

tron–hole states interacting with a continuum gives rise

to a number of important features, like increased de-

coherence and line broadening, changes in shape of the

absorption coefficient. All these signatures have been

experimentally evidenced.

In this short review, we shall present some of the

recent findings about the continuum states of semi-

conductor heterostructures. In Sect. 2, we recall the

QW continuum states. Then, in Sect. 3 we switch to the

continuum states of the QD single particle spectrum, in

particular the part they play in the phonon-assisted

capture and in the photo-detection of far infrared light.

Section 4 will be devoted to the two particle continuum

states of QDs and to their role in ejecting carriers that

were already bound to the QD.

R. Ferreira (&) Æ G. Bastard
Laboratoire Pierre Aigrain, Ecole Normale Supérieure,
24 rue Lhomond, F-75005 Paris, France
e-mail: wei.wu@boku.ac.at

G. Bastard
Institute of Industrial Sciences, Tokyo University, 4-6-1
Komaba, Meguro-kuTokyo 153-8505, Japan
e-mail: gerald.bastard@lpa.ens.fr

Nanoscale Res Lett (2006) 1:120–136

DOI 10.1007/s11671-006-9000-1

123

NANO REVIEW

Unbound states in quantum heterostructures

R. Ferreira Æ G. Bastard

Published online: 27 September 2006
� to the authors 2006



The continuum states of quantum wells

Throughout this review, we shall confine ourselves to

an envelope description of the one electron states.

Further, we shall for simplicity use a one band effective

mass description of the carrier kinematics in the

heterostructures. Multi-band description [2] can be

very accurate for the bound states, in fact as accurate

as the atomistic-like approaches [3–5]. To our knowl-

edge, the continuum states have not received enough

attention to allow a clear comparison between the

various sorts of theoretical approaches. Their nature is

intricate enough to try in a first attempt a simplified

description of their properties.

In a square quantum well, the Hamiltonian is:

H ¼ p2
z

2m�
þ p2

x

2m�
þ

p2
y

2m�
þ VbðzÞ; ð1Þ

where m* is the carrier effective mass, taken as iso-

tropic and position independent for simplicity. The

potential energy Vb(z) is – Vb in the well and 0 in the

barrier (|z| > w/2, where w is the well width). Because

of the translational invariance in the layer plane, the

total eigenstates are of the form

Wðx; y; zÞ ¼ eiðkxxþkyyÞ
ffiffiffi

S
p vðzÞ

e ¼ �h2

2m�
ðk2

x þ k2
yÞ þ ez ð2Þ

where k = (kx, ky) is the wave-vector related to the free

in-plane motion, S the layer (normalization) surface

and ez and v(z) are solutions of the one-dimensional

(1D) Hamiltonian :

p2
z

2m�
þ VbðzÞ

� �

vðzÞ ¼ ezvðzÞ ð3Þ

Hence, disregarding the in-plane motion, one finds

bound states (energies ez < 0) that are non-degenerate

and necessarily odd or even in z (see e.g., [5–8]). For

energies ez > 0 the states are unbound. They are twice

degenerate and correspond classically to an electron

impinging on the well, being suddenly accelerated at

the interface then moving at fixed velocity in the well,

being suddenly decelerated at the second interface and

moving away from the well at constant speed. Classi-

cally, the time delay experienced by the electron be-

cause of the well is therefore negative. Quantum

mechanically, one can exploit the analogy between the

time independent Schrödinger equation and the prop-

agation of electromagnetic fields that are harmonic in

time (see e.g., [9]). Then, the continuous electronic

spectrum of the square well problem translates into

finding the solutions of Maxwell equations in a Perot–

Fabry structure (see e.g., [10]). We shall therefore

write the solution for ez > 0 in the form:

vþðzÞ ¼ eikb zþw=2ð Þ þ reikb zþw=2ð Þ z � �w=2
vþðzÞ ¼ aeikwz þ be�ikwz zj j � w=2
vþðzÞ ¼ teikb z�w=2ð Þ z � w=2

ð4Þ

for a propagation from the left to the right. Here, kb

and kw are the electron wavevectors in the barrier and

in the well, respectively:

kw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m� ez þ Vbð Þ
�h2

s

; kb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�ez

�h2

r

ð5Þ

The coefficients r and t are the amplitude reflection

and transmission coefficients, respectively. The inten-

sity coefficients are, respectively, R and T with:

R ¼ rj j2; T ¼ tj j2; Rþ T ¼ 1 ð6Þ

There exists a v–(z) solution at the same energy ez as

v+(z). It corresponds to an electron motion from the

right to the left. Neither v+, nor v– is an eigenfunction

of the parity operator with respect to the center of the

well. Sometimes, it is desirable to get those solutions

(e.g., in order to evaluate the bound-to-continuum

optical absorption in the electric dipole approxima-

tion). One then takes the normalized symmetrical

(even states) or anti-symmetrical (odd states) combi-

nations of v+ and v– [11].

The v+ and v– states are not normalizable. One should

thus use wavepackets to get properly normalized wave-

functions. These wavepackets can be made reasonably

narrow to assimilate them in the barrier or in the well to

an almost classical particle moving at a constant velocity.

The time evolution of these wavepackets (see Bohm [8]

for a throughout discussion) reveals that for most of the

energies of the impinging electron, the time delay

experienced by the packet due to its crossing of the well

is negative, exactly like in the classical description.

However, for certain energies there is a considerable

slowing down of the packet by the quantum well. In fact,

the packet is found to oscillate back and forth in the well,

as if it were bound, before finally leaving it. The states for

these particular energies are called virtual bound states.

They also correspond to the Perot–Fabry transmission

resonances:

kww ¼ pp ð7Þ
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For these particular energies the electron piles up in

the well, while it is usually repelled by it, on account

that its wavefunction should be orthogonal to all the

other solutions, in particular the bound states.

The spatial localization of these particular solutions

can also be evidenced by the display of the quantum well

projected density of states versus energy [12]. To do so,

one first completely discretizes the states for the z motion

by closing the structure at z = ± L/2, where L � w.

One then sums over all the available states that have the

energy e, including the in-plane free motion. Since the

free motion is bi-dimensional (2D), one should get

staircases starting at the energies e = ez of the 1D prob-

lem. Each of the staircases is weighted by the integrated

probability to finding the carrier in the well. The result of

such a calculation is shown in Fig. 1. for L = 300 nm and

several w for electrons (Vb = 195 meV; m* = 0.067m0).

For a particle occupying uniformly the available space,

the magnitude of each step would be w/L. One sees very

clearly that this is not the case for the lower laying con-

tinuum energies. In particular, there exist particular

energies where the integrated probability in the well is

considerably larger than the classical evaluation.

These particular continuum states are thus candidates

to play an important role in the phenomenon of capture

processes. In such a capture event, a carrier, initially

delocalized over the whole structure, undergoes a scat-

tering where its final state is bound to the well. This

scattering can be globally elastic (impurity scattering for

instance) and thus amounts to transforming kinetic en-

ergy for the z motion into in-plane kinetic energy. The

scattering can also be inelastic like for instance the

absorption or emission of phonons. These phonons are

either optical or acoustical. It has been known since a

long time that the most efficient inelastic scattering in

compounds semiconductors is the emission of longitu-

dinal optical (LO) phonons by the Fröhlich mechanism

(see e.g., [13–15]). Since III–V or II–VI semiconductors

are partly polar and have most often two different atoms

per unit cell, the longitudinal vibrations in phase oppo-

sition of these two oppositely charged atoms produce a

macroscopic dipolar field. A moving electron responds

to this electric field. The interaction Hamiltonian be-

tween the electron and the LO phonons reads:

He�ph ¼ �ie

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�hxLO

2e0X
1

e1
� 1

er

� �

s

X

~q

1

q
e�i~q:~raþ~q � ei~q:~ra~q

� �

ð8Þ

where W is the sample volume, e¥ and er are the high

frequency and static dielectric constants, respectively,

and the LO phonons have been taken bulk-like and

dispersionless. By using the Fermi Golden Rule, we

can compute the capture rate of a QW continuum

electron due to the emission of a LO phonon versus the

Fig. 1 Quantum-well projected density of states (in units of
q0 ¼ m�S

p�h2 Þ versus energy E. Curves corresponding to different w
are displaced vertically for clarity. q/q0 varies by 5% between
two horizontal divisions. From [12]

Fig. 2 The average capture times for electrons and holes are
plotted versus the QW thickness L for electrons (a) and holes
(b). From [11]
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well width w. This rate is averaged over the distribu-

tion function of the continuum electron. Figure 2

shows the result of such a computation by assuming

that the distribution function is a constant from the

edge of the continuum to that edge plus �hxLO and

taking bulk-like phonons [11]. One sees oscillations in

the capture time whose amplitude diminishes at large

w. Oscillatory capture times were also calculated by

Babiker and Ridley [16] in the case of superlattices.

These authors also took into account the effect of the

superlattice on the optical phonons. Experimentally, to

observe the oscillations, one uses time resolved inter-

band photoluminescence: carriers are photocreated in

the continuum in a structure that has been lightly

doped in order to make sure that the luminescence

signal arising from the ground QW transition has a rise

time that is dominated by the arrival of the minority

carriers. The predicted oscillations were not observed

in regular QWs or superlattices because the capture

time of electrons and holes was always too short

compared to the experimental resolution. Morris et al.

[17] however managed to increase it by inserting nar-

row but high AlAs potential barriers between the

GaAs wells and the Ga(Al)As barriers. The slowing

down of the capture allowed for a reliable measure-

ment of the capture time. A satisfactory description of

the experimental findings (capture time versus well

width) was achieved by taking into account the carriers

capture by the well due to the emission of LO phonons

(see Fig. 3). In actual QW lasers there are many car-

riers in the barriers or in the wells. They screen the

Fröhlich interaction. The screening affects the capture

rate and makes it to depend on the carrier concentra-

tion. This effect was studied by Sotirelis and Hess [18].

Note finally that the existence of resonant states is

not restricted to square well problems. Generally

speaking, however, the more sharply varying potentials

display the more pronounced resonances.

One electron effects of continuum states

in QDs: capture and photo-detection

A vast amount of literature is available in QDs, in

particular those grown by Stransky–Krastanov mode

(see e.g., [1]). Under such a growth technique a

material A (say InAs) is deposited on a substrate B

(say GaAs). The lattice constants of the two materials

being different (in our specific example 7%), the sub-

sequent growth of A on B accumulates strain energy

because the lattice constant of A has to adjust to that of

B. There exists a critical thickness of A material be-

yond which the growth cannot remain bi-dimensional.

A 3D growth mode results. Under favorable circum-

stances this growth gives rise to droplets of A material,

called dots or boxes, whose structural parameters

(height, radius) depend on the growth conditions

(impinging fluxes, substrate temperature, etc....)

The InAs/GaAs dots have received a considerable

attention because of their possible applications in tele-

communications (lasers, photo-detectors). Even for

these well studied objects, there exist controversies on

their shape, sizes, interdiffusion, etc.... In the following,

we discuss QDs that retain a truncated cone shape with a

basis angle of 30�, a height h = 2–3 nm and a typical

radius R = 10 nm (see Fig. 4). Our calculations, there-

fore, attempt to describe InAs QDs embedded into a

GaAs matrix (or a GaAs/AlAs superlattice). The QD

Fig. 3 Theoretical curves of
the electron capture time as a
function of the well width for
xAl = 0.27 and xAl = 0.31.
Symbols: experimental
capture times for electrons.
From [17]
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floats on a thin (0.5 nm) wetting layer. Within the one

band effective mass model (m* = 0.07m0), the QD

strongly binds two states; one non-degenerate state with

S symmetry, which is the ground state, and a twofold

degenerate (P+ and P–) excited state. A second S state is

marginally bound as well as two D+, D– states. Here S,

P ± , D ± refer to the projection along z of the electron

angular momentum in the effective Hamiltonian.

Including spin, a dot could therefore load 12

non-interacting electrons. Actually, there are ample

evidences by capacitance spectroscopy [19] that InAs

QDs can load six electrons. The situation is less clear for

the remaining six electrons because the one electron

binding of these states is quite shallow making the sta-

bility of the multi-electron occupancy of these excited

shells a debatable issue. Due to the nanometric sizes of

these QDs, there exist large Coulomb effects in QD

bound states. Coulomb blockade (or charging) energies

have been measured by capacitance techniques [19].

The Coulomb charging energy in the S shell amounts to

be about 35 meV. This value is close from the numerical

estimates one can make [20]. Figure 5 displays the

Coulomb matrix elements for S and P ± states [26] in

cones versus the basis radius and keeping the basis angle

constant (12�).

Besides the purely numerical calculations of the QD

bound states, approximate solutions using the varia-

tional technique exist that are more flexible and still

quite accurate. A numerical/variational method [21,

22] proved useful to handle both single- and multi-

stacked dots. It consists in searching the best solutions

that are separable in z and q and where the q depen-

dent wavefunction is a priori given and depends on one

or several parameters ki. The in-plane average of the

Hamiltonian is then taken leaving a one dimensional

effective Hamiltonian governing the z dependent part

of the wavefunction. Because of the radial averaging

procedure, the 1D Hamiltonian depends on the varia-

tional parameters ki of the radial part of the wave-

function. This Hamiltonian is numerically solved. Its

lower eigenvalue is retained and its minimum versus

the ki is searched. Because the z dependent problem is

solved numerically, one gets several eigenvalues

besides the lower one. They should in principle not be

retained. Note, however, that if the potential energy

were the sum of a z-dependent part and of a radial

part, the problem would be exactly separable and, for a

given radial wavefunction, we would be allowed to

retain all the eigenvalues of the effective z-dependent

motion. This suggests that if the problem is almost

separable, then the excited states solutions of this

variational ansatz may correspond to actual states of

the real heterostructure. An example [22] of applica-

tion of the separable method is shown in Fig. 6 for a

2R

h

Fig. 4 Schematic representation of an InAs QD
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Fig. 6 Square modulus of the envelope functions versus z for
different states of an InAs QD. Truncated cone. Ve = 0.697 eV,
R = 10 nm, h = 3 nm, basis angle: 30�. 0.333 nm thick wetting
layer. From [22]
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single QD, where the z- dependent probability densi-

ties for the 1S and 1P ± states are shown versus z,

together with the wetting layer one (Vb = 0.7 eV). It is

interesting to notice that the z dependent 1S and 1P

probability densities look very much alike, as if the

problem were a separable one.

The continuum states of a QD are in general

impossible to derive algebraically, except in a few cases

(e.g., spherical confinement [23, 24]). So, very often,

plane waves were used to describe these states in the

numerical calculations. Sometimes, this approximation

is not very good because, actually, a QD is a deep (a

fraction of an eV) and spatially extended (thousands of

unit cells) perturbation.

Capture

The carrier capture by a quantum dot due to the

emission of an LO phonon is reminiscent of the capture

by a QW. There is however a big difference between

them. It is the fact that there exists a whole range of dot

parameters where the capture is impossible because of

the entirely discrete nature of the QD bound states [24–

26]. If there is no bound state within �hxLO of the edge of

the 2D continuum (the wetting layer states) then it is

impossible to ensure the energy conservation during the

capture process. In QWs instead, each z dependent

bound state carries a 2D subband associated with the in

plane free motion and any energy difference between

QW bound states and the onset of barrier continuum

can be accommodated (of course with a decreasing

efficiency when increasing the energy distance between

the bound state and the onset of the continuum).

When it is energy allowed the carrier capture by a

QD is efficient (1–40 ps). When the carrier capture by

the emission of one LO phonon proves to be impos-

sible, Magnusdottir et al. [25] showed that the capture

due to the emission of two LO phonons comes into

play with an efficiency that is not very much reduced

compared to that of the one LO process. Magnusdottir

[24] also handled the case of one LO phonon capture

when the dot is already occupied by one electron or

one hole. The outcome of the calculations was that

there is little difference on the narrowness of the

parameter region that allows a LO phonon-assisted

capture. Experimentally, the carrier capture time has

been deduced from the analysis of time-resolved pho-

toluminescence experiments on QD ensembles. Auger

effect was often invoked to interpret the data. In par-

ticular, a very fast electron capture was measured [27]

in p-type modulation-doped QDs. Very recently, the

transient bleaching of the wetting layer absorption

edge was analyzed by Trumm et al. [28]. A fast (3 ps)

electron capture time was deduced from the experi-

ments. This time was independent of the density of

carriers photoinjected into the wetting layer.

In QDs it is now well established [29] that the

energy relaxation among the bound states and due to

the emission of LO phonons cannot be handled by the

Fermi Golden Rule whereas this approach works very

nicely in bulk and QW materials [13]. The coupling to

the LO phonon is so strong compared to the width of

the continuum (here only the narrow LO phonon

continuum since we deal with the QD discrete states)

that a strong coupling between the two elementary

excitations is established with the formation of pola-

rons. The existence of polarons was confirmed by

magneto-optical experiments [30]. Since the QDs may

display virtual bound states it is an interesting question

to know whether a strong coupling situation could be

established between the continuum electron in a vir-

tual bound state and the LO phonons. If it were the

case, the notion of capture assisted by the (irreversible)

emission of phonons should be reconsidered. To

answer this question, Magnusdottir et al. [31] studied

the case of a spherical dot that binds only one state (1s)

while the first excited state 1p, triply degenerate on

account of the spherical symmetry, has just entered

into the continuum, thereby producing a sharp reso-

nance near the onset of this continuum. The energy

distance between 1s and 1p was first chosen equal to

the energy of the dispersionless LO phonons, in order

to maximize the electron–phonon coupling. The cal-

culations of the eigenstates of the coupled electron and

phonons reveal that polaron states are indeed formed.

In addition, one of the two polarons become bound to

the QD while the other is pushed further away in the

continuum (see Fig. 7). So, the coupling to the phonons

has changed the nature of the electronic spectrum.

However, this situation is rather exceptional and as

soon as one detunes the electronic energy distance

from the phonon, the polarons are quickly washed out.

Very recently, Glanemann et al. [32] studied the

phonon-assisted capture in a QD from a 1D wire by

quantum kinetics equations and found significant dif-

ferences from the semiclassical predictions. Particularly,

because of the short time scale involved in the capture,

the QD population is not a monotonically increasing

function of time, even at low temperature where there is

no available phonons to de-trap the carrier.

Photo-detection

Since the conduction and valence band discontinuities

between QDs and their hosts are usually a fraction of

an eV, the QDs are inherently taylored to be used in
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the photo-detection of infrared light, ranging typically

from 30 to 400 meV. There have been indeed several

studies of photo-detectors based on InAs QDs (see

e.g., [33–50])

In addition, the discrete nature of their lower lying

eigenstates allows, at first sight, a photo-ionization for

normal incidence that should be of the same order of

magnitude as the photo-absorption for light propagat-

ing in the layer plane with its electric field lined along

the z-axis. For QW structures, the so-called QWIP

devices, only the latter is allowed, forcing the use of

waveguide geometry to detect light [51]. Besides, the

nature of the QD continuum is largely unexplored and

it would be useful to know if there are certain energies

in these continuums that influence markedly the photo-

absorption. In this respect, Lelong et al. [50] reported a

theoretical analysis of Lee et al. data [49] that corre-

lated features of the photo-absorption to the virtual

bound states of the QDs. Finally, the link between the

QD shape and the nature of the photo-absorption, if

any, remains to be elucidated. We shall show that the

flatness of actual InAs QDs not only influences the QD

bound states but also shapes the QD continuum. In

practice, the only continuum states that are signifi-

cantly dipole-coupled to the QD ground bound state

are also quasi-separable in q and z and display radial

variations in the quantum dot region that resemble the

one of a bound state. Also, like in QWs, the E//z

bound-to-continuum (B–C) absorption is considerably

stronger than the E//x (or y) one. In addition, the E//z

B–C QD absorption is almost insensitive to a strong

magnetic field applied parallel to the growth axis, in

spite of the formation of quasi Landau levels (again

like in QWs). All these features point to regarding the

photo-absorption of InAs QDs as being qualitatively

similar to the QWs one, although there is some room

left for recovering a strong E//x (or y) B–C photo-

absorption, as discussed below.

The structures we shall discuss were grown by MBE

and consist of periodic stacks of InAs QD planes

embedded into a GaAs/AlAs superlattice [37, 52].

Since the period is small (�10 nm) the QDs line up

vertically, on account of the strain field. The 1 nm thick

AlAs layers were Si-doped to load the QDs with one

electron on average (see Fig. 8 for a sketch [53]). A

comparison was made between QD/GaAs and QD/

GaAs/AlAs periodic stacks. The latter devices display

better performances due to a significant reduction of

the dark current [37, 52]. The QDs are modeled by

truncated cones with a height 2 nm, a basis radius

R = 10.2 nm and a basis angle of 30�. The one electron

states were calculated from a numerical diagonaliza-

tion [52, 53] of the hamiltonian:

H ¼ p2

2m�
þ Vðq; zÞ þ 1

2
xcLz þ

1

8
m�x2

cq
2 þ dV ~rð Þ ð9Þ

where the magnetic field B is taken parallel to z,

xc = eB/m*, V(q, z) is the isotropic part of the QD

confining potential and dV any potential energy that

would break the rotational invariance around the z-

axis (e.g., if the QDs have an elliptical basis, if there

exist piezo-electric fields,...). The dots are at the center

of a large cylinder with radius RC = 100 nm. Because

the confining potential depends periodically on z, the

eigenstates of H can be chosen as Bloch waves labeled

by a 1D wavevector kz with – p/d < kz £ p/d. A

Fourier–Bessel basis was used at B = 0 while at

B > 10 T we use a Fourier–Landau basis. The con-

duction band offset between InAs and GaAs (respec-

tively, between GaAs and AlAs) was taken equal to

0.4 eV (1.08 eV) while the effective mass m* = 0.07m0

as obtained from magneto-optical data [30]. Figure 9

Fig. 8 Schematic representation of the supercell including the
dot and its wl. Period d = 11 nm. From [53]

Fig. 7 (a) Integrated probability that an electron in a p
continuum state is found in the QD versus energy E. Spherical
dot. Ve = 76.49 meV. me = 0.067m0. Dot radius: 8.55 nm.
Rb = 1500 nm. There is a virtual bound state at 76.58 meV and
a true bound state with S symmetry at E = 41.59 meV. (b)
Polaron states |1æ and |2æ that arise from the diagonalization of
the Fröhlich Hamiltonian between the p continuum and the 1LO
phonon replica of the bound S state. From [31]
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shows the calculated Landau levels with S symmetry of

a GaAs/AlAs/QD superlattice versus B ‡ 10 T at

kz = 0. The extrapolation of the fan chart to B = 0 are

marked by circles. They are roughly: 16 meV, 144 meV,

293 meV and 701 meV. Two states with S symmetry

and a negative energy do not belong to a fan. These are

in fact the two (1S and 2S) bound states of a single dot

that are very little affected by the periodic stacking. The

dashed lines are the results obtained from the separable

model with a Gaussian variational wavefunction for the

in-plane motion. It is quite remarkable that the B = 0

solutions of the effective 1D Hamiltonian are so close

from the numerical data not only for the ground state

but also for all the excited solutions in the continuum

with S symmetry. In principle only the lowest eigen-

value (the ground energy) should be retained in the

variationnal approach. All the excited states (for the z

motion since the in-plane motion is locked to the best

Gaussian for the ground state) are a priori spurious: the

Hilbert space retained in the ansatz may be too small to

correctly describe the excited states. However, if the

problem were separable in z and q, all the different

solutions for the z motion would be acceptable. The fact

that the variational approach works so well suggests

strongly that the problem is quasi-separable. In fact, it is

the flatness of the dots that leads to the quasi-separa-

bility. Since the InAs dots are so flat (h > R), any

admixture between different z dependent wavefunc-

tions costs a very large amount of kinetic energy and, in

practice, all the low lying states, bound or unbound,

display similar z dependencies.

There are, however, distinct signatures of the non-

separability in the B „ 0 spectrum in Fig. 9. In a truly

separable problem, the Landau levels of two distinct

B = 0 edges El and El
¢ for the z motion should cross at

fields B such that:

n�hxc þ El ¼ n0�hxc þ El0 ð10Þ

The non-separability replaces the crossings by anti-

crossings. They are quite small (the lowest anti-cross-

ing in Fig. 9 that shows up near B = 40 T is only a few

meVs wide and certainly much smaller than the sepa-

rable terms (about 150 meV). Hence, even for the

continuum states, one can conclude that the small

aspect ratio of the InAs QDs (h/R � 0.2) influences

most strongly the energy spectrum.

Let us now attempt to quantify the effect of the QD

on the energy spectrum of a GaAs/AlAs/InAs(wl) su-

perlattice in which the InAs dot has been removed but

all the other parameters remain the same as before.

This 1D superlattice has its first miniband that starts at

�19 meV. The other kz = 0 edges are located at

151 meV, 293 meV and 699 meV. The appearance of

low lying bound states and the red shift of the first ex-

cited state witnesses the presence of the attractive QD.

Conversely, the superlattice effect deeply reshapes the

QD continuum. Without superlattice, the onset of the

continuum for an isolated dot would be at – 15 meV

(edge of the narrow wetting layer QW); with the su-

perlattice it is blue-shifted at +16 meV. Therefore, it is

in general impossible to disentangle the QD effects

from the superlattice effects. In no case can one assume

that one effect is a perturbation compared to the other.

The optical absorption from the ground state | 1S; kz æ
to the excited states (bound or unbound) |nL; kz æ can

now be calculated using:

a xð Þ /
X

nL;kz

wnL;kz

D

�

�~e: ~pþ e~A0

� �

w1S;kz

�

�

E
�

�

�

�

�

�

2

d EnL;kz
� E1S;kz

� �hx
	 


ð11Þ

where L = S, P ± ,...,A0 is the vector potential of the

static field and e the polarization vector of the elec-

tromagnetic wave. We have only retained the vertical

transitions in the first Brillouin zone. In z polarization

and within the decoupled model, we expect that the

only non-vanishing excited states probed by light are

Fig. 9 Calculated energy levels with S symmetry versus mag-
netic field. The dashed lines are the results of the separable
model with a Gaussian radial function. kz = 0. From [53]
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the L = S states shown in Fig. 9. This expectation is

fully supported by the full calculation as shown

in Fig. 10. The main difference between the full

calculation and the predictions of the separable model

is the double peak that appears near 0.26 eV at

B = 35 T. It is a consequence of the anti-crossing dis-

cussed previously. Quite striking is the insensitivity of

the absorption spectra to the magnetic field. It is

reminiscent of the QW behavior, where it is known

that, besides band non-parabolicity, the intersubband

spectrum should in an ideal material be B-independent

for z polarized light.

It was thought that QDs could lead to infrared

absorption for x or y polarized light while QWs

respond only to z polarization. Actually, this expecta-

tion is frustrated by the lateral size of regular dots

(R � 10 nm) which allows several states of different L

to be bound. Hence, all the oscillator strength for the x

polarization is concentrated on the bound-to-bound

S–P transition that takes place near 50 meV. Very little

is left for the S-to-continuum (P) transitions and the

photodetection in this polarization is not efficient. A

way to remedy this drawback is to push the ground P

states in the continuum, transforming them into virtual

bound states (Note that the flatness of the QDs makes

the virtual bound state for the z motion to occur at very

high energy). This takes place for R � 5.8 nm. An

example of the drastic changes in the oscillator

strength for x polarization is shown in Fig. 11 at B = 0

and kz = 0 between S and P levels in dots with

decreasing radius. Starting from a large dot (R = 7 nm)

where the P level is bound and exhausts all the oscil-

lator strength, the QD radius decreases down to 4.5 nm

leading to a broadened peak in the continuum whose

amplitude decreases with increasing energy in the

continuum.

To conclude this section, we show in Fig. 12 a com-

parison between the calculated and measured absorption in

GaAs/AlAs/QD superlattices for z polarization [52]. It

Fig. 10 Absorption coefficients versus photon energy at B = 0
and B = 30 T calculated by two models for e//z. From [53]

Fig. 11 Oscillator strength versus transition energy from the
ground S state to the first 30 P states at B = 0, kz = 0 and for
several basis radius. e//x. The ordinate in the case R = 70 Å is five
times bigger than the others. From [53]

Fig. 12 Comparison between the calculated absorption spectra
and measured photoconductivity spectra of InAs QDs versus
photon energy. Adapted from [21] and [52, 53]
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is seen that a reasonably good description of the

experimental absorption is obtained by the calcula-

tions, despite our neglect of the inhomogeneous

broadening due to fluctuating R from dot to dot. This is

probably due to the fact that the ideal spectra are

already very broad due to the large energy dispersion

of the final states.

In summary, it appears that the continuum of the

QDs, which plays a decisive part in the light absorp-

tion, depends sensitively on the surrounding of the dots

(the superlattice effect). However, the photo-response

is deeply affected by the flatness of these objects, to a

point that most of the infrared absorption features look

very much the same as those found in QW structures,

except if special QD parameters are carefully designed.

Two particle continuum states in QDs

In QDs, one often deals with many particle states: even

in a single undoped QD the radiative recombination

involves at least one electron–hole pair. When several

particles come into play, one should wonder about

their excited states. It may very well happen that the

energy of a discrete excited two particle state lays inside

a mixed continuum of states that corresponds to a sit-

uation where one of the two particle lays in a lower

state (possibly the ground state) while the other has

been ejected in the continuum. A well known example

of such a feature occurs in He atoms for the doubly

excited 2P–2P discrete state whose energy is larger

than the mixed bound-continuum states formed by

keeping one electron in a 1S orbital while the other

belongs to the continuum. It is our implicit use of one

particle picture that often leads us to the wrong con-

clusion that the product of two discrete states should

necessarily belong to the discrete part of the two par-

ticles spectrum.

Two particles effects are important for the capture/

ejection of one carrier inside/outside a QD. They are

therefore the agent that links the QDs bound states,

with their inherently low number, to the macroscopic

outside world with its huge phase space. So, the two

particle effects can be either beneficial by bringing

carriers where we want to see them but also detri-

mental in that they may lead to a loss of carriers bound

to the dots. Another detrimental effect, important in

view of the quantum control of the QD state, imper-

atively needed to any kind of quantum computation,

arises if a coupling is established between the QD

bound states and their environment (see e.g., [54, 55]).

The environment is essentially decoherent: its density

matrix is diagonal with Boltzmann-like diagonal terms

and any off diagonal term decays in an arbitrarily short

amount of time. There is, therefore, a risk of polluting

the quantum control of the QD if two particle effects

come into play and connect the QD bound state to the

continuum of unbound QD states. Let us recall that, as

mentioned earlier, there are both a 2D continuum

associated with the wetting layer states and a 3D one

associated with the surrounding matrix.

The carriers interact because of Coulomb interac-

tion. The capture or ejection of particles due to Cou-

lomb scattering between them is usually termed Auger

effect.

Two particle effects involve either different parti-

cles, like electrons and holes, or two identical particles,

e.g., two electrons. In the latter situation, the wave-

function should be anti-symmetrized to comply with

the Pauli principle.

Electron–hole Coulomb scattering

The electron capture to a QD by scattering on delo-

calized holes has been investigated by Uskov et al. [56]

and Magnusdottir et al. [57] assuming unscreened

Coulomb scattering and conical, spherical or pancake-

like QD shapes. These authors found a quadratic

dependence of the scattering rate upon the hole carrier

concentration: if R is the rate of carriers making a

transition from the wetting layer to the QD bound

state, the numerical results can be described by:

R ¼ Cehp2
h ð12Þ

where ph denotes the hole concentration and Ceh is a

constant. In contrast to the single carrier capture due to

LO phonon emission (see above), the Coulomb scat-

tering is always allowed. It is the more efficient when

the momentum change for the carrier that remains

delocalized (here the hole) is the smaller. If one

assumes a Boltzmann distribution of the continuum

states, then the Auger capture of an electron to a QD

will be the more efficient when there is an electronic

level close from the onset of the continuum. Values of

Ceh reach 10–23 m4 s–1. They are typically two orders of

magnitude smaller than the Auger rate of electron

capture by electron–electron scattering. This can be

understood as follows: the holes have a larger mass

than the electrons. Therefore, for a given excess

energy, the scattered hole will undergo a larger change

of wavevector than would a scattered electron. This

implies that the Coulomb matrix elements that show

up in the Fermi Golden Rule will be smaller for holes,

in particular the form factors (for a more thorough

analysis, see [24]). The same reasoning leads to the
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conclusion that, for given QD parameters, the capture

on a Pe level should be more efficient than on Se level.

It is also possible that the Auger scattering by

delocalized holes leads to a relaxation of electrons that

are already bound to the QDs in excited states. This

relaxation mechanism was first studied by Bockelmann

and Egeler [58]. Like the electron capture by Auger

effect, its efficiency increases linearly with the hole

concentration. It was found that a fast relaxation (say a

transition rate for relaxation in excess of 1011 s–1) was

possible at relatively large hole concentration (say

ph > 1011 cm–2) and also that the numerical results are

little affected by using unscreened or dynamically

screened coulombic potentials.

It has been suggested by Efros et al. [59] that elec-

tron–hole scattering between bound states could lead

to an electron relaxation accompanied by a simulta-

neous ‘‘heating’’ of the hole. Strictly speaking this

relaxation does not take place: if the electron–hole pair

possesses only discrete energy levels, then either it has

been placed initially in one of these states and then

nothing happens, or it has been prepared in a linear

superposition of these states and then, the pair will visit

all its (finite number of) available states. In particular,

as time flows, it will come close in energy (or even

coincides with) the initial states (quantum resurgence).

The electron relaxation cannot be irreversible because

there is no continuum to create this irreversibility.

However, it may well happen that in practice the

excited hole levels (because of the hole heavy effective

mass or the particular shape of the dot) are so dense

that they actually mimic a continuum. This question

clearly requires further studies, taking in particular into

account the fact that irreversible acoustical phonon

emission becomes efficient between closely spaced

discrete levels [60].

Irreversible Auger relaxation accompanied by the

ejection of the hole is possible if the initial energy of

the electron–hole pair exceeds the energy of the pair

where the electron has a lower energy and the hole is in

the continuum (either 2D or 3D). This phenomenon

was discussed by Ferreira et al. [26] and shown to be

very efficient when it is energetically allowed. It is

therefore beneficial for the relaxation. We shall now

see that it is intimately linked to debated experimental

findings.

It has been shown by Toda et al. [61], and since

observed by many groups [62–65], that continuums of

optical absorption existed in InAs QDs at much lower

energy than expected for the onset of the wetting layer-

wetting layer transitions (labeled we–wh in the following)

but at larger energy than the ground recombination

line (Se–Sh). In the following, we assume cylindrical

symmetry for QDs and label electron–hole states by

indexing the one particle states by e or h. Figure 13

shows a single dot photoluminescence excitation

spectrum versus the excess electron–hole energy com-

pared to Se–Sh. It is seen that for excess energies

> 50 meV, there exists peaks that are superimposed to

an increasing background. It is noteworthy that the

width of these peaks increases with increasing excess

energy.

Complementary information were obtained from

the study of the temperature dependence of the peak

widths in different single InAs QDs by Kammerer

et al. [63] (see Fig. 14). Compared to Oulton et al. [64],

these dots support less bound states, in other words Pe–

Ph is closer from we–wh, the onset of the 2D continuum

(� 66 meV compared to � 195 meV). It was found that

the peak widths increase continuously with T and, like

in Oulton et al’s experiments, that the excited peak

Fig. 13 Photoluminescence excitation spectrum of a single InAs/
GaAs QD versus the energy of the incident light measured from
the photoluminescence line. Courtesy Dr. R. Oulton

(

(

µ

Fig. 14 Full width at half maximum of the ground transition and
of an excited transition in a single InAs QD versus temperature.
Adapted from [61]
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(attributed to Pe–Ph) displays larger widths than the

ground one (Se–Sh). More striking is the faster tem-

perature increase for Pe–Ph compared to Se–Sh. Actu-

ally, it appears that Pe – Ph has a width that increases

linearly with T, a feature that recalls what is usually

observed in bulk materials or QW structures. In addi-

tion, the order of magnitude of the slope of this linear

increase is comparable to the findings in QW struc-

tures. In the latter, the linear increase in the line

broadening is simply due to the number of acoustical

phonons n(T) that are irreversibly emitted by the QW

or bulk excitons: at high temperature n(T) becomes

proportional to T. This phonon emission is accompa-

nied by an energy relaxation of the exciton, through its

translational kinetic energy, till a (very small) wave-

vector where the emission of acoustical phonons

becomes impossible. The fact that the same feature

shows up in QDs, believed to display only discrete

states, was puzzling. In QDs, there is a priori no e–h

continuum that surrounds the discrete Se–Sh or Pe–Ph

discrete lines. Hence, the only possible acoustical

phonon emission would be due to either the electron or

the hole of the pair relaxing towards a lower state. This

relaxation is however known to be very inefficient

(phonon bottleneck) as soon as the energy difference

between the two levels exceeds a few meVs [60, 66].

The puzzle was resolved by Vasanelli et al. [67] who

pointed out that, if Pe–Ph has a larger energy than the

mixed (or crossed) continuum generated by letting the

electron to occupy a lower state (e.g., Se) in lieu of Pe

while the hole would be kicked out from the QD, then

it will auto-ionize due to Coulomb interaction. Sym-

metrically, the hole could relax while the electron

would be ejected from the QD. With the usual InAs/

GaAs QDs, it is the former mixed continuum that has

the lower energy.

Let us briefly see how the discrete state Pe–Ph

acquires a finite lifetime because it is Coulomb-coupled

to one (or several) continuum(s) (for details see [22]).

To simplify the matter as much as possible, we retain

only Pe–Ph as the only discrete state of the problem.

Further, we take only one mixed continuum into ac-

count. Since the diagonal Coulomb matrix elements

are quite large, we write:

H¼He þHh þ d PePhj i PePhh j
þ Veh � d PePhj i PePhh jð Þ ð13Þ

where d = ÆPe Ph |Veh | Pe Ph æ and Veh is the electron–

hole Coulomb coupling. The discrete state is at the

same energy as the Se–wh continuum. Then, its lifetime

is given by the expression:

�h

2psPe�Ph

¼
X

mh

PePhh jVeh Semhj ij j2d ePePh
� eSemh

� �

ð14Þ

In the previous equation, the matrix elements are

difficult to evaluate because they involve the exact

continuum states of the hole | mh æ. If one approximates

these states by the plane waves ~kh

�

�

�

E

, the evaluation of

the matrix elements becomes simple and for typical

dots with me = 0.07m0, mh = 0.38m0 and using the

variational solutions [21, 22] for the Pe, Se, Ph states,

we get a lifetime in the range of 1–100 ps for the Pe–Ph

transition, depending on the QD radius. Note that this

is considerably shorter than the radiative lifetime (�
1 ns). The auto-ionization lifetime does not vary much

with increasing Pe–Ph energy because the continuum to

which Pe–Ph is superimposed is 2D. However, like in

the Auger capture, the trend for s is towards an

increase (i.e., a decreasing linewidth of the Pe–Ph line)

with increasing detuning of the Pe–Ph transition from

the onset of the continuum: the ejected electron has an

increasing kinetic energy and therefore its Coulomb

matrix elements are smaller. The decreasing trend

would be more pronounced if it were the hole that was

ejected from the dot.

Within the auto-ionization formalism one readily

understands the experimental observations [63, 64]

that the width of the discrete peaks superimposed to

the increasingly larger continuum was increasing. It is

simply that further and further crossed transitions

channels open when the e–h pair energy increases.

The net result of the Coulomb coupling is that the

e–h pair spectrum becomes continuous around the

discrete state. Hence, it becomes possible to envision

that the now virtual bound Pe–Ph state becomes cou-

pled to other states of the continuum by the emission

of acoustical phonon of low energy (1 meV or so). The

coupling to the phonons is the sum of the electron

coupling and of the hole coupling. The emission or

absorption of a phonon is therefore due to one particle,

the other being a spectator. Because there is no com-

mon state to Pe–Ph, and Se–mh, we see that there is no

direct phonon coupling between the discrete state PePh

and the continuum. To get a non-zero term (see

Fig. 15), one should Coulomb admix Pe–Ph with Xe–mh

or Se–Xh, where Xe, Xh are two arbitrary electron or

hole states. The larger admixture is provided by Se–Sh.

Hence:

wj i � PePhj i þ 1
D SeShj i;

D ¼ ePe
� eSe

þ eph
� eSh

þ PePhh jVeh PePhj i
� SeShh jVeh SeShj i

ð15Þ
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The lifetime limited by the acoustical phonon

emission is therefore given by:

�h

2psem
�
X

mh

X

~Q

aac
~Q
� �

�

�

�

�

�

�

2 Shh je�i~Q:~rh mhj i
�

�

�

�

�

�

2

D2
1þ n~Q

� �

d Fðvh;QÞ½ �Fðvh;QÞ ¼ePe
þ ePh

þ PePh Vehj jPePhh i
� ðVbh þ emh

þ eSe
þ �hcSQÞ

ð16Þ

where Q is the 3d phonon wavevector and bulk

isotropic phonons have been considered. nQ is the

Bose-Einstein occupation number and cS the sound

velocity. aac is the hole-acoustical phonon interaction

and Vbh is the height of the QD potential for holes and

em_h is the kinetic energy of the ejected hole. A similar

expression holds for phonon absorption except that

1 + nQ should be replaced by nQ. The linear increase of

the broadening with T follows immediately since at

large T the number of acoustical phonons nQ � kBT/

�hxQ � 1. Likewise the Auger broadening, we expect

the phonon broadening to increase with increasing

energy of the auto-ionizing state. This is because of the

multiplication of the crossed continuums and hence of

the larger density of final states for the phonon emis-

sion. One finds that the slope of the Pe–Ph linewidth

versus T is a few tens of leV/K for typical QDs.

In summary, the existence of mixed continuum

allows us to write that:

1

s
¼ 1

sc
þ cT ð17Þ

where sc is the lifetime limited by Coulomb effects with

the further information that both 1/sc and c increase if

one investigates states that are more excited than

Pe–Ph.

At elevated temperature optical phonon scattering

would come into play. In contrast with acoustical

phonons, the coupling with LO phonons does not

follow the Fermi Golden Rule but rather gives rise to

mixed elementary excitations: the polarons [68, 69].

The previous weak coupling description is inappropri-

ate to handle the auto-ionization of the Pe–Ph polaron.

Work remains to be done in this area.

Note that it is nowadays experimentally well estab-

lished that acoustical phonons dress the Coulomb

correlated e–h pairs (as witnessed by the pedestal that

supports the sharp zero phonon line [70], observed in

the interband spectroscopy of single QDs). Thus, one

may wonder if the non-perturbative couplings [71] that

lead to these pedestals should not be taken into ac-

count in the calculation of the phonon-assisted lifetime

of Pe–Ph or more excited transitions. Actually, we do

not believe this is the case because the physical

mechanism at stake, the acoustical phonon emission by

a bound electron–hole pair to become a mixed con-

tinuum state, is genuinely outside the scope of the

formalism that leads to the pedestal. The latter is based

on the restriction of the electron–hole pair Hilbert

space to a single level.

The irreversible emission of acoustical phonons and

the Auger disintegration of the excited e–h pairs share

irreversibility in common. The size of the continuum to

which the initial discrete state is coupled is so big that

the probability that the system returns to its initial

quantum state decays exponentially to zero with a

short time constant (a few ps). This irreversible decay

affects not only the populations of the Pe–Ph levels but

also the coherences of the Pe–Ph interband transition.

At the largest, the lifetime of the coherence of this

excited transition is twice the population lifetime.

Therefore, any entanglement one can imagine which

would involve the excited pair state is prone to a ps

decay if the discrete pair state has a larger energy than

the first mixed continuum.

Coulomb scattering between identical particles

As mentioned above, the main difference between the

Coulomb scattering of identical particles compared to

that of unlike particles is the requirement of anti-

symmetrization. Bockelmann and Egeler [58] studied

the relaxation of an already bound electron to a QD by

Auger effect with a plasma of delocalized electrons.

They found this Auger relaxation to become efficient

(transition rate in excess of 1011 s–1) only for large

plasma concentration (1011 cm–2). A similar calculation

was undertaken by Wetzler et al. [72] who studied the

case of Auger processes between the electrons bound

to a QD and 2D (electrons in a wetting layer, a nearby

QW) or 3D (contacts) delocalized carriers located a

Fig. 15 Sketch of the perturbation schemes that contribute to
the Auger or phonon broadening of an excited transition (here
Pe–Ph) superimposed to a crossed continuum (here Se–mh)
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distance d from the QD plane. For a 2D density of

1011 cm–2 mobile carriers located at d = 0 nm from the

QD plane, Wetzler et al. found a 1012 s–1 transition

rate for a 30 meV energy variation of the bound car-

rier. The rate increases linearly with the carrier con-

centration. If, however, the 2D gas is at d = 40 nm

away from the QD plane, the Auger rate drops to

108 s–1 at T = 77 K and a 2D carrier concentration of

1011 cm–2.

Uskov et al. [56], Magnusdottir et al. [57] studied

the Auger capture from a 2D electron plasma (or a

hole plasma). They found a capture rate that grows

quadratically with the carrier concentration (Fig. 16).

Again only carrier concentration in excess of 1011 cm–2

leads to significant rates. Also, the capture is the more

efficient to the shallower bound state because of as

maller wavevector transfer to the scattered particle.

Auger scattering and capture were also studied theo-

retically by Nielsen et al. [73], Nilsson et al. [74] and by

Chaney et al. [75].

Because of its technological importance for lasers,

the Auger rates in QD were measured by several

groups [76–82]; for a general discussion see [83]).

Marko et al. [84] recently demonstrated that the Auger

recombination remains an important factor in 1.3lm

InAs QD lasers while it plays a less important role in

QD lasers that emit at 980 nm. In the 1.3 lm case the

threshold current increases with temperature while it

remains constant in the 980 nm case, as indeed

expected from lasing action between discrete levels.

When two electrons are bound to a QD, in a Pe shell

for instance, very short relaxation times (ps) for one

electron to Se were calculated by Ferreira et al. [26].

This intra dot Auger relaxation occurs only if the initial

energy is greater than the onset of the crossed con-

tinuum Se–we. It efficiency can be qualitatively

understood by noting that it corresponds to a charge

of – 2e squeezed in a nanometric volume (a truncated

cone with R = 10 nm, h = 2–3 nm and a basis angle of

30�) and therefore to a large electron 3D concentra-

tion.

A series of single dot photoluminescence experi-

ments have been undertaken by Warburton et al. on

InAs QDs with a controllable number of electrons [85]

and Urbaszek et al. [86]. This control was achieved by

placing the QD plane in the intrinsic part of a MIS

structure [87]. The ground luminescence line (Se–Sh)

was then observed when the QD is loaded by 0, 1, 2, 3...

electrons. Let us first consider the radiative recombi-

nation of the doubly charged exciton X2–. It comprises

three electrons and one hole. The ground configuration

of this complex has the hole in the Sh state. The Se shell

is filled with two electrons. There is one electron in the

Pe shell. After optical recombination, no hole is left,

one electron is in Se while the other is in the Pe state.

There are two possible two electron states corre-

sponding to a total spin
P

= 0 or
P

= 1. The
P

= 0

state lays at higher energy than the triplet state. The

interband transition occurs at lower energy and is

considerably broader when the final state is the singlet:

broadenings of 0.5 meV and < 0.05 meV for final
P

= 0 and
P

= 1 states, respectively. Both of these

linewidths grow quickly and almost linearly with tem-

perature. These features are reminiscent of the Auger

broadening discussed above for the auto-ionization of

the Pe–Ph two particle states. However, the intra dot

Auger mechanism applies to the X2– case only if both

the
P

= 0 and
P

= 1 (Se–Pe) energies are above the

Se–we edges, i.e.

ePe
þ CSePe

� ExSePe
[Ve � ewl ð18Þ

where CS_e Pe and ExS_e Pe stand for the direct and

exchange Coulomb integrals, respectively, between Se

and Pe electrons, the plus (minus) sign is for the
P

= 0(
P

= 1) state. Ve is the conduction band offset

and ewl is the energy distance between the bound state

for the z motion in the wetting layer and the GaAs

continuum. The Coulomb effects between the Se

electron and the electron in the wetting layer has been

neglected. The condition given by Eq. (18) is difficult

to fulfill in the general case. It was argued [86] that the

broadening of the X2– lines and particularly of the
P

= 0 one was due to the overlap between these dis-

crete states and the band tail of the Se–we edge due to

the shallow binding of the Se–Pe configuration. Within

Fig. 16 The carrier capture rate of electrons into a QD (1P
state) is plotted versus the carrier sheet density in the wetting
layer for LO phonon-assisted and Auger captures. The QD is a
truncated cone with R = 5.4 nm, h = 3 nm and a basis angle of
30�. Courtesy Dr. I. Magnusdottir [24]
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this scheme, the very different linewidths of the triplet

and singlet state would arise from the different matrix

elements between the singlet or triplet states and the

bandtail.

Another interesting situation arises when there are

three electrons residing in the dot at equilibrium. By

adding one electron–hole pair, one finds one hole in Sh

state. The Se shell is filled by two electrons. The Pe

shell contains two electrons. Assume the total electron

spin
P

is one. This
P

= 1 is the initial, discrete, state

of the optical recombination (Fig. 17). The final state

of the recombination consists in a dot with no hole, one

electron in the Se shell and two electrons in the Pe

shell. These three electrons can have a total spin of

either
P

= 3/2 or
P

= 1/2. In Warburton et al.’s and

Urbaszek et al.s’ experiments, this excited configura-

tion of the QD charged by three electrons was proba-

bly degenerate with the continuum of states

corresponding to a dot loaded by two electrons both in

the Se shell, the third electron having been ejected in

the wetting layer continuum (a
P

= 1/2 state). Hence,

the
P

= 1/2 recombination line, instead of being dis-

crete (or rather displaying a l eV width due to the

radiative broadening), displays a finite width controlled

by the Auger effect. This width is of the order of

�1 meV, in agreement with theoretical estimates [22,

26, 88]. The
P

= 3/2 line is much less broad than the
P

= 1/2 line because in addition to the Coulomb

scattering, an extra spin flip is needed to allow a
P

= 3/2 state to disintegrate into a
P

= 1/2 contin-

uum.

Furthermore, the PL experiments on charged single

dots were undertaken in the presence of a strong

magnetic field applied parallel to the growth axis. This

strong field Landau quantizes the in-plane motion of

the ejected electron. If the Landau quantization is

larger than the homogeneous broadening, then the

irreversible auto-ionization of the excited configuration

(due to Auger effect) becomes suppressed. There are

now discrete (but degenerate) wetting layer states.

Only a small number of them are Coulomb-coupled to

the discrete states, on account of the conservation of

the total angular momentum. Any time the magnetic

field lines up the energy of the discrete states with one

of these wetting layer Landau levels, an anti-crossing

takes place and one observes several recombination

lines instead of a single one.

Finally, by biasing the structure even further, the

wetting layer (assumed empty in the previous discus-

sion) starts to fill. The X3– exciton,
P

= 1/2 becomes

degenerate with a Fermi sea and complicated many

body effects may show up. In one of them, the QD spin

becomes screened by Fermi sea at low temperature.

The total spin of the Fermi sea plus the QD is zero

(Kondo exciton [89, 90]). This is a non-perturbative

effect of the Coulomb interaction (in contrast to the

Auger decay previously discussed). Smith et al. [91]

obtained evidences of spin flip scatterings between the

electron bound to a QD and the adjacent Fermi sea in

the back contact of a biased QD by observing the

change of dark QD bound excitons into bright exci-

tons.

Conclusions

The semiconductor heterostructures of low dimen-

sionality are characterized by a very small number of

available quantum states at low energies. This is cer-

tainly beneficial if one attempts a quantum control of

physical properties that depend sensitively on these

sparse states. On the other hand, this makes their

direct excitation extremely difficult to achieve. One is

then forced to supply these nanometric objects with

carriers through their macroscopic surrounding. Cer-

tain states of the continuum are better suited than

others to play this part; these are the virtual bound

states (of a QW, a QD). There are evidences that the

virtual bound states control the feeding of the low

laying states in a QW. The photoconductive properties

of QDs have already evidenced the part played by the

virtual bound states.

Initial state:
X3-

Radiative
recombination

QD3-

Excited states (  = 1/2)
QD2-

Ground state (  = 0)

Auger
relaxation

Fig. 17 Sketch of the
different charge
configurations involved in the
radiative recombination of
the X3– exciton in a QD
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The two particle states are a very rich area to

investigate. Any kind of interband optical properties

involve electron–hole pairs. Their spectrum can display

mixed continuums where one of the particles is bound

to the dot while the other travels freely in the wetting

layer. These mixed continuums can overlap discrete

excited pair states, transforming them into virtual

bound states of the pair Hamiltonian. The detrimental

action of these mixed continuums on the linewidth of

QD excited transitions has been experimentally dem-

onstrated but should receive more attention.

Finally, the electrical control of the loading of a

single dot has allowed for the observation of the Auger

relaxation of excited configurations of charged QDs

when the wetting layer was empty. The coherent mix-

ing of discrete QD bound states with an occupied

wetting layer remains, so far, a tantalizing concept.
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